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Waveguide superlattices, a special type of waveguide arrays, can be designed to achieve very low cross talk at
submicrometer/subwavelength pitches. The theoretical framework and design rationales for such waveguide
superlattices will be presented in depth. Waveguide sidewall roughness can help to deter the coherent coupling
between identical waveguides in nearby supercells, but it also induces random fluctuation of transmission.
Statistical behavior of the transmission due to roughness in a waveguide superlattice is systematically treated.
Complex transmission characteristics due to spectral oscillation and random roughness will be presented, and
their evolution with the superlattice length will be analyzed. © 2016 Chinese Laser Press
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1. INTRODUCTION
Waveguides are ubiquitous in integrated optics. The density of
waveguides is a fundamental issue in many integrated optical
devices and systems. High-density waveguides with small
pitch are often preferred in many applications. For example,
in a wavelength demultiplexer or spectrometer based on
echelle gratings [1], the wavelength resolution can be directly
enhanced by increasing the density of the output waveguides.
For an optical phased array, high-density output waveguides
with half-wavelength pitches would be ideal [2,3] for wide
beam steering range and high energy efficiency. Furthermore,
with the recent rise of silicon photonics [4–10], chip-scale op-
tical interconnection is envisioned. Future computer chips
with more than 100 cores may require tens of thousands of
waveguide channels for interconnection [11]. The density of
waveguides will be crucial to reducing the on-chip estate
occupied by the waveguides and to reducing the associated
cost. Previously, dielectric waveguide density is fairly low,
with pitches a few micrometers or more [12–14]. Recently,
high-density waveguide superlattices with half-wavelength
pitches have been proposed and demonstrated [15,16]. This
work will present detailed theoretical analysis and design
rationales that enabled the development of such waveguide
superlattices. Note that coupling in densely packed wave-
guides has also been analyzed with insight from atomic phys-
ics analogy [17]. Artful designs of thermo-optic switches have
been proposed and demonstrated using densely packed wave-
guides to greatly reduce the switching power [18]. Ingenious
schemes of simultaneous mode and polarization-division mul-
tiplexing have been proposed and demonstrated in densely
packed waveguides [19].

2. SUPERLATTICE CONCEPT AND DESIGN
CONSIDERATIONS
A. Prior Approaches
If we are interested in reducing the cross talk between two
waveguides only, there is a simple approach based on direc-
tional couplers. In an asymmetric directional coupler, the
intercoupling between two waveguides can be very low if
the propagation constant differenceΔβ of the two waveguides
is sufficiently large. According to the well-known theory
for directional couplers [20], the coupling ratio is given by

P1→2∕P1 � sin2�L
�����������������������������
�Δβ∕2�2 � κ2

p
�∕��Δβ∕2κ�2 � 1�, where L is

the coupling length and κ the coupling strength. If
Δβ∕2κ > 10, the coupling ratio (i.e., cross talk) can be less
than −20 dB. However, just as the technique of forming a
H2 molecule cannot be applied to form a hydrogen crystal,
the above method for two waveguides cannot be applied to
a large array of waveguides. Fundamentally, this is because
in a large array, substantial intercoupling of waveguides exists
between the second-nearest and third-nearest neighbors and
beyond. At large waveguide pitches, such couplings between
nonnearest-neighbors is negligible, but they can exhibit
themselves prominently as the waveguide pitch reaches the
subwavelength (sub-λ) scale. Furthermore, direct couplings
can cascade to form a sequence of indirect coupling paths.
The superposition of these direct and indirect paths can result
in very complex cross-talk behavior with respect to the neigh-
boring waveguide index. Cross talk may not decrease mono-
tonically with waveguide-index difference. For example,
sometimes the cross talk to a second-nearest neighbor can be
higher than that to the nearest neighbor. An example can be
found in the Supplementary Information of [16]. To block all
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these direct and indirect coupling paths, new approaches
need to be explored.

Some other approaches were also considered to reduce
the cross talk in waveguide arrays. For example, decoupling
of densely packed photonic crystal waveguides has been
observed in simulation, which can be explained by the self-
imaging principle [21]. Photonic crystals inserted between
waveguides were found to help reduce the cross talk exper-
imentally [22]. However, the insertion of the photonic crystal
structures requires additional space between waveguides
and limits the smallest achievable pitch. It is also possible
to modify the propagation constants along the waveguide
axis. But this generally causes additional insertion loss and
sometimes causes backscattering of light. A preferred ap-
proach is to maintain a uniform cross section along the axis
of each waveguide while varying the widths among different
waveguides. It is also possible to vary the waveguide height.
However, from the fabrication point of view, varying the
waveguide height will require additional fabrication steps
and incur higher cost.

B. Design Constraints
Once the avenue of varying waveguide width is chosen, there
remain a number of constraints that fundamentally limit the
design of a waveguide array with low cross talk. First, most
applications require each waveguide to operate in the single-
mode regime, which poses an upper bound for the waveguide
width. Second, as the waveguide narrows below a certain
critical width (e.g., 300 nm), the mode width expands signifi-
cantly, which causes increased mode overlap and enhanced
inter coupling/cross talk with other waveguides in an array.
This results in a lower bound for the waveguide width.
Third, between the upper and lower bounds of widths, a num-
ber of widths can be chosen to design the waveguides.
However, generally it is preferred that the waveguide widths
are sufficiently different; otherwise there may be difficulties in
fabricating the structures with sufficient tolerance.

Under these constraints, there are two possible categories
of structures: (1) a waveguide superlattice where the wave-
guide widths repeat periodically every n waveguides as illus-
trated in Fig. 1; (2) a random waveguide lattice where the
waveguide widths have no clear order.

C. Concerning the Randomization Approach
Light localization in random (or disordered) photonic struc-
tures has been studied for decades [23–25]. In principle, when
a one-dimensional photonic lattice is random, light will
be localized. For an array of waveguides whose propagation

constants are all random, it is anticipated that all waveguides
will be localized around certain waveguides. This suggests
the decoupling of waveguide modes, which has potential to
be applied to reduce the cross talk.

However, a number of issues in waveguide applications
limit the viability of such a randomization approach. First,
localization theory generally cannot guarantee that each
waveguide mode has a localization length less than one lattice
constant (in terminology of localization) or that each mode is
localized around just one waveguide (in terminology of wave-
guides). Indeed, sometimes, a localized mode can spread over
two or more lattice sites [26]. Second, even for a mode that has
a localization length less than one lattice constant, such a
mode usually has some overlap with adjacent lattice point
(or waveguides). It is difficult to guarantee, for each mode,
such overlap is weak enough to produce < − 20 dB cross talk,
which is often required for photonic applications. In addition
to randomization, other light localization approaches, such as
curved waveguide arrays [27], may also be useful to reducing
cross talk. More studies are needed to explore these scientific
approaches to assess whether they meet the cross-talk re-
quirements (usually in dB scale) for practical applications
at subwavelength pitches.

3. THEORY OF WAVEGUIDE
SUPERLATTICES
This section presents the theoretical framework used in wave-
guide superlattice design.

A. Theory of a Waveguide Superlattice
Here we present a waveguide coupling theory for high-index-
contrast waveguides (such as silicon∕SiO2 waveguides), built
upon a prior cross-sectional mode theory in a photonic crystal
waveguide. A general full-vectorial form of the cross-sectional
mode theory is given as follows [28]:

Âjψi � −i
∂
∂z

B̂jψi; (1)

jψi ≡
 
Et�x; y; z�
Ht�x; y; z�

!
e−iωt; Et ≡

 
Ex

Ey

!
; Ht ≡

 
Hx

Hy

!
;

Â �
 
ωε − ω−1∇t × μ−1∇t× 0

0 ωμ − ω−1∇t × ε−1∇t×

!
;

B̂ �
 

0 −ẑ×

ẑ× 0

!
; (2)

where ε�x� is the dielectric function, μ the permeability, and ω
the angular frequency of light. The axes of waveguides are
along the z axis. For an array of waveguides, the tensorial po-
tential is given by Â � Â0 � ΔÂ1 � ΔÂ2 � ΔÂ3 �…, where Â0

is the tensorial potential for a homogeneous system with the
index of the cladding material (e.g., the entire space is filled
with SiO2). The tensorial potential for an isolated waveguide n
is given by Ân � Â0 � ΔÂn, whose corresponding index pro-
file is plotted in Fig. 2(b).

For an isolated structure that has the nth waveguide only,
the mode solution is given by

jψni � exp�iβnz�jni;

a as
z

x

y z

x

y

supercell

Fig. 1. Schematic drawing of waveguide superlattice structure.
Direct coupling path and indirect coupling paths are illustrated by
dashed and solid lines.
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where jni satisfies �Ân � i ∂
∂z B̂�jni � βnB̂jni. Note that the

nth waveguide’s cross section is centered at �xn0; yn0� with
a width wn. The mode orthogonality is given by hm�jB̂jni �
δmnηn jηnj � 4P, where P is the optical power of the mode.
This is based on

hψ jB̂jψ 0i � ẑ ·
Z

E�
t ×H0

t � E0
t ×H�0

t dxdy: (3)

For a guided mode, hm�j � hmj. A mode of a waveguide array
can be expressed in the form of

jψi �
X
n

cnjψni �
X
n

cn exp�iβnz�jni: (4)

This form of mode can be substituted into Eq. (1) to find a set
of equations for the coefficients cn as follows:

0 ≈
X
n

cn exp�iβnz�hmj�Â − Ân�jni

�
X
n

i
∂cn
∂z

exp�iβnz�hmjB̂jni: (5)

From Eq. (5) onward, we will neglect the backward guided
modes, whose propagation constants are negative and differ
greatly from the propagation constants of the forward guided
modes (β > 0). Because of the large difference in β between
forward and backward modes, the cross talk between them is
usually orders of magnitude smaller than the leading cross-
talk terms between forward modes. One can readily see this
through the asymmetric directional coupler formula above.
The matrix hmj�Â − Ân�jni can be considered as a perturba-
tion. Therefore we can define a perturbation matrix ΔAwhose
elements are

�ΔA�mn � hmj�Â − Ân�jni: (6)

For the fourth column of ΔA, the corresponding dielectric
constant perturbation for �ΔA�m4 � hmj�Â − Â4�j4i is shown
in Fig. 2(c). Note that the corresponding dielectric constant
“perturbation” is not small in space. This is the nature of sil-
icon photonic structures due to their high index contrast.
Therefore, we cannot make simple approximations based
on small index perturbation. It should also be noted that
the spatial profile of the perturbation varies with the column
index n. For example, for the fifth column of ΔA, the “missing
waveguide core”would be at the fifth waveguide location, cor-
responding to �ΔA�m5 � hmj�Â − Â5�j5i.

The coefficients cn can be solved from the following
equation:

�B��eiβnz�−i∂cn∕∂z�� ≈ �ΔA��eiβnzcn�: (7)

The final field amplitude (envelope function) in the mth
waveguide is given by

um�z� � hmjBjψ�z�i ≈
X
n

hmjBjnicn exp�iβmz�: (8)

The corresponding optical power in each waveguide can be
calculated accordingly, and Eqs. (7) and (8) can be used to
assist in designing waveguides with high density.

Sometimes, it is more convenient to introduce a phased
mode coefficient,

c̃n � eiΔβnzcn; (9)

where Δβn � βn − β1 represents a reduced phase variation
(removing a fast varying eiβ1z term). The coefficient c̃n satis-
fies a simpler equation,

−i�∂∕∂z��c̃n� ≈ �K ��c̃n�; (10)

where �K � � �B�−1�ΔA� � �Δβnδmn�. The [K] matrix will provide
more convenience in subsequent discussions.

Generally, the coupling generally will cause the propaga-
tion constants of the supermodes to deviate from the
propagation constants of the isolated waveguides. It would be
interesting to know how much deviation it can cause and
whether this can lead to two supermodes having very close
propagation constants, which often leads to high cross talk.
Based on the Gershgorin circle theorem [29], the eigenvalues
Λn of [K] should satisfy

jΛn − Knnj ≤
X
k≠n

jKnkj: (11)

Thus, the sum of all off-diagonal elements on each row,P
k≠njKnkj, is sufficiently small, and Λn should be very close

to Knn. Note that Λn � β1 is essentially the propagation
constant of the nth supermode, and Knn � β1 is roughly the
propagation constant of the waveguide n. When the sum of
the coupling terms on the right-hand side of Eq. (11) is small,
this equation indicates that the propagation constant of a
supermode will not deviate far from that of an isolated wave-
guide. Generally, the off-diagonal matrix element behaves as
Knk ∼ exp�−μjn − kja� for sufficiently large values of jn − kj,
where μ is roughly a constant. The exponential decrease with
jn − kj ensures that the sum converges.

In addition, one readily sees that

jΛn − Λmj ≥ jKnn − Kmmj − jΛn − Knnj − jΛm − Kmmj: (12)

By virtue of Eq. (11), one can readily show that

jΛn − Λmj ≥ jKnn − Kmmj −
"X
k≠m

jKmkj �
X
k≠n

jKnkj
#
: (13)

Therefore, if the following condition is satisfied,

0
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ε 4(x
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(c)

Fig. 2. Dielectric constant profile for (a) the superlattice, (b) an iso-
lated waveguide #4, and (c) the dielectric c perturbation correspond-
ing to the perturbation potential �ΔA�m4.
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jKmm − Knnj ≫
X
k≠m

jKmkj �
X
k≠n

jKnkj; (14)

Eq. (13) shows that the propagation constants of the superm-
odes are sufficiently different.

However, in a superlattice where some waveguides
inevitably have the same propagation constant and hence the
same Knn, Eq. (14) can no longer be satisfied for some m and
n in an ideal structure. To suppress the cross talk due to
such degenerate modes, nonideal effects in a real waveguide
superlattice must be considered, as discussed next.

B. Roughness-Induced Effect in a Waveguide
Superlattice
In real waveguides, roughness generally adds a random
perturbation to the mode equation, Eq. (7):

�B��eiβnz�−i∂cn∕∂z�� ≈ ��ΔA� � �R���eiβnzcn�; (15)

where [R] represents the roughness-induced perturbation
potential. Each element of [R] is a function of z; usually only
its correlation function is known. The perturbation potential
[R] is dominated by the diagonal term, which gives a random
correction of propagation constant, Rnn, for the nth wave-
guide. The off-diagonal element of R is a factor Bmn smaller
(∼3% for a � 800 nm, even smaller for larger pitches), where
Bmn is the off-diagonal term of normalized [B] (i.e., diagonal
elements are all unity). The random roughness has two ef-
fects. First, the diagonal elements, Rnn, lift the degeneracy be-
tween superlattice modes that would otherwise have identical
propagation constants in an ideal roughness-free structure.
Physically, it produces a phase dither as the wave propagates
in each waveguide. This prevents coherent cross talk between
waveguides with identical widths. Second, the off-diagonal
elements Rmn produce random scattering, which creates addi-
tional incoherent cross talk.

For the coefficient c̃n, the following equation applies:

−i�∂∕∂z��c̃n� ≈ �K ��c̃n� � �R̃��c̃n�; (16)

where �R̃� � �B�−1�R�. Note that because the off-diagonal
elements [B] are much smaller than the diagonal ones, �R̃�
is nearly diagonal as well.

If [K] and �R̃� commuted with each other, one can obtain

�c̃n� � exp
�
i�K �z� i

Z
z

0
�R̃�dz0

�
�c̃n�0��; (17)

which would greatly facilitate the statistics calculation of
the output intensity and cross talk for small roughness.
Unfortunately, because elements of [R] depend on z, even
if we assume that �R̃� is diagonal, [K] and �R̃� do not commute
with each other. Hence, there is no simple way to integrate
Eq. (16) analytically, and the statistics must be numerically
calculated with a large number of random configurations.
This requires extensive numerical simulations using the theo-
retical formulation in this work. Note that the above theory
only needs discretization along z whereas the commonly used
method such as the finite-difference time-domain (FDTD)
technique needs discretization in x, y, and z. The above theory
is much more efficient. If the FDTD technique is used, the sim-
ulation time could be prohibitive considering the waveguide

length and simulation grid needed for simulating small
roughness. Note that the effect of stochastic variation of
the widths of a two-waveguide coupler have been studied by
other methods recently [30]. Note that radiation modes are
neglected here, considering prohibitive computational resour-
ces needed for calculations involving a huge number of radi-
ation modes [28]. Generally, only the cross talk between
guided modes is of interest; therefore radiation modes are
not essentially needed in cross-talk calculation. The role of
radiation modes is primarily to produce optical loss through
roughness-induced scattering. The effect of such loss can be
evaluated separately [16].

4. NUMERICAL RESULTS AND DISCUSSION
Based on the design constraints in Section 2.B, we have set the
waveguide widths between a lower bound of 330 nm and an
upper bound of 450 nm. The minimum width difference is set
to 30 nm. Under these constraints, we consider a SC5 super-
lattice, whose supercell consists of waveguides with widths
450, 390, 330, 420, and 360 nm at a pitch of 800 nm.

Such a so-called interlacing-recombination configuration
[16] can separate two waveguides with the smallest width dif-
ference by 2a rather than a, which effectively reduces the
cross talk between them. The statistical transmission charac-
teristics for such an SC5 superlattice are shown in Figs. 3–5
for superlattice lengths L � 500 μm, 1 mm, and 3 mm, respec-
tively. RMS roughness σ and correlation length lc are taken
from [16].

For each cross-talk channel Tij , the peaks of the averaged
transmission spectrum change insignificantly with the super-
lattice length L after a short stabilization length (typically
∼200 μm). For example, the peaks of the averaged transmis-
sion spectra hT32�λ�iR for L � 500 μm, 1 mm, and 3 mm are
−23.68, −23.05, and −23.66 dB. Here h·iR indicates an average
over all random configurations. The error bars in Figs. 3–5 in-
dicate one standard deviation.

-60

-40

-20

0
input: 1

T
ra

ns
m

is
si

on
 (

dB
)

input: 2 input: 3 input: 4

-60

-40

-20

0
input: 5

T
ra

ns
m

is
si

on
 (

dB
)

input: 6 input: 7 input: 8

1.52 1.54 1.56

-60

-40

-20

0
input: 9

T
ra

ns
m

is
si

on
 (

dB
)

λ (μm)
1.52 1.54 1.56

input: 10

λ (μm)
1.52 1.54 1.56

input: 11

λ (μm)

 

 
 1

 2

 3
 4

 5

 6

 7

 8
 9

10

11

Fig. 3. Statistics of transmission fluctuation (indicated by error
bars) for an SC5 superlattice, a � 800 nm, σ � 2 nm, lc � 30 nm,
L � 500 μm.
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The random distributions of transmission for a typical
cross-talk channel at given wavelengths and lengths are
shown in Fig. 6. The distributions vary with wavelengths
and lengths. Spectra of several random configurations are
shown in Appendix A.

Furthermore, the magnitude of the random fluctuation of
Tij�λ; L� changes significantly with L. For a given λ, the stan-
dard deviation stdR�Tij�λ; L�� over all random configurations
of roughness is not necessarily a monotonically increasing
function of L, as shown in Fig. 7(a)—using T32 as an example.
In the absence of roughness, the deterministic transmission
spectra of an ideal waveguide array comprise nearly periodic
undulations. These deterministic spectra agree very well the
averaged spectra hTij�λ; L�iR of waveguides with roughness,
as expected. As L increases, the periodicity of the spectral

undulation changes, and the spectral peaks and valleys of
hTij�λ; L�iR shift. Depending on whether a given λ is close to
a peak or valley, the sensitivity of Tij�λ; L� to small roughness
varies substantially. The overall trend of stdR�Tij�λ; L�� in
Fig. 7(a) is that it increases with L, albeit there are significant
fluctuations. Note that such fluctuations are for the standard
deviation of Tij , not Tij itself. The magnitude of such fluctua-
tions increases monotonically for L < 300 μm, but it does
not show a clear trend of increase/decrease for large L in
Fig. 7(a). In addition, the increase of stdR�Tij�λ; L�� slows
down for L > 2 mm.

Interestingly, if the statistical transmission characteristics
are calculated over all random configurations of roughness
and over all wavelengths (indicated by h·iR;λ), the results
show a more consistent trend of slow increase without much
fluctuation (after the initial stabilization length), as shown in
Fig. 7(b). Clearly, the error bar length does not fluctuate
significantly with L. This seems to indicate that when all fluc-
tuations due to random roughness and due to wavelengths
variation are considered, a statistically stable ensemble is
obtained. Furthermore, our calculations indicate that for
large L, the average transmission hTijiR;λ saturates toward
a final value.

The theory in this work is applicable to waveguide
arrays with pitches of half-wavelength or larger, which were
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Fig. 4. Statistics of transmission fluctuation for an SC5 superlattice
(same parameters as Fig. 3 except L � 1 mm).
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Fig. 5. Statistics of transmission fluctuation for an SC5 superlattice
(same parameters as Fig. 3 except L � 3 mm).
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experimentally studied in [16]. It would be interesting to fur-
ther investigate waveguide arrays with even smaller pitches
(e.g., corresponding to interwaveguide gaps of 100 nm or
below). For such small gaps, some adaptation of part of
the current theory may be beneficial [for example, one might
directly solve the original mode equation, Eqs. (1) and (2), to
find the supermodes]. Detailed analysis is beyond the scope of
this work.

5. CONCLUSION
In summary, we have presented the design rationales and de-
tailed theory of waveguide superlattices with subwavelength/
submicrometer pitches. Prior approaches to cross-talk reduc-
tion have been briefly discussed. The concept and theoretical
formulation of low-cross-talk waveguide superlattices are
then developed. The spectral dependence of cross talk at
various superlattice lengths has been presented. The complex
behavior of such dependence with random transmission fluc-
tuations due to waveguide sidewall roughness is simulated.
Statistics over all random configurations and all wavelengths
are shown to be more stable than statistics over random
configurations alone.

APPENDIX A
A real structure can have just one “random” configuration for
the roughness. The roughness will cause the transmission
spectra to exhibit random fluctuations. To illustrate this,
the transmission spectra of T32 for several random configura-
tions are shown in Fig. 8. The indices (out of 1–100) of the
random configurations are picked randomly by the computer.
At a short length [Fig. 8(a)], the random fluctuations are not
obvious in the spectra. However, as the roughness effect ac-
cumulates over a long distance, the fluctuations can be very
high and oscillate very fast with the wavelength, as shown in
Fig. 8(c). Sometimes a high peak or dip can appear, which may
cause an overshoot of the cross talk.
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